Design, Implementation and Cryptanalysis of Modern Symmetric Ciphers
نویسنده
چکیده
The main objective of this thesis is to examine the trade-offs between security and efficiency within symmetric ciphers. This includes the influence that block ciphers have on the new generation of word-based stream ciphers. By incorporating block-cipher like components into their designs, word-based stream ciphers have experienced hundreds-fold improvement in speed over bit-based stream ciphers, without any observable security degradation. The thesis also emphasizes the importance of keying issues in block and stream ciphers, showing that by reusing components of the principal cipher algorithm in the keying algorithm, security can be enhanced without loss of key-agility or expanding footprint in software memory. Firstly, modern block ciphers from four recent cipher competitions are surveyed and categorized according to criteria that includes the high-level structure of the block cipher, the method in which non-linearity is instilled into each round, and the strength of the key schedule. In assessing the last criterion, a classification by Carter [45] is adopted and modified to improve its consistency. The classification is used to demonstrate that the key schedule of the Advanced Encryption Standard (AES) [62] is surprisingly flimsy for a national standard. The claim is supported with statistical evidence that shows the key schedule suffers from bit leakage and lacks sufficient diffusion. The thesis contains a replacement key schedule that reuses components from the cipher algorithm, leveraging existing analysis to improve security, and reducing the cipher’s implementation footprint while maintaining key agility. The key schedule is analyzed from the perspective of an efficiency-security tradeoff, showing that the new schedule rectifies an imbalance towards efficiency present in the original. The thesis contains a discussion of the evolution of stream ciphers, focusing on the migration from bit-based to word-based stream ciphers, from which follows a commensurate improvement in design flexibility and software performance. It
منابع مشابه
A new CPA resistant software implementation for symmetric ciphers with smoothed power consumption: SIMON case study
In this paper we propose a new method for applying hiding countermeasure against CPA attacks. This method is for software implementation, based on smoothing power consumption of the device. This method is evaluated on the SIMON scheme as a case study; however, it is not relying on any specific SIMON features. Our new method includes only AND equivalent and XOR equivalent operations since every ...
متن کاملBlock Ciphers And Cryptanalysis
This report gives a basic introduction to block cipher design and analysis. The concepts and design principles of block ciphers are explained, particularly the class of block ciphers known as Feistel ciphers. Some modern block cipher cryptanalysis methods are demonstrated by applying them to variants of a weak Feistel cipher called Simplified TEA (STEA), which is based on the Tiny Encryption Al...
متن کاملCryptanalysis of the Two-Dimensional Circulation Encryption Algorithm
In symmetric-key cryptography, two parties share a secret key K to encrypt messages using a cipher. Symmetric encryption techniques are used to efficiently encrypt data. Two common types of ciphers are commonly used nowadays: block ciphers and stream ciphers. Block ciphers encrypt blocks of data (typically 64 or 128 bits) in a fixed key-dependent way. The design of block ciphers is a well-studi...
متن کاملA new method for accelerating impossible differential cryptanalysis and its application on LBlock
Impossible differential cryptanalysis, the extension of differential cryptanalysis, is one of the most efficient attacks against block ciphers. This cryptanalysis method has been applied to most of the block ciphers and has shown significant results. Using structures, key schedule considerations, early abort, and pre-computation are some common methods to reduce complexities of this attack. In ...
متن کاملConstruction of New Families of MDS Diffusion Layers
Diffusion layers are crucial components of symmetric ciphers. These components, along with suitable Sboxes, can make symmetric ciphers resistant against statistical attacks like linear and differential cryptanalysis. Conventional MDS diffusion layers, which are defined as matrices over finite fields, have been used in symmetric ciphers such as AES, Twofish and SNOW. In this paper, we study line...
متن کامل